Point Cloud Library (PCL)  1.7.1
don.hpp
1  /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2012, Yani Ioannou <yani.ioannou@gmail.com>
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 #ifndef PCL_FILTERS_DON_IMPL_H_
38 #define PCL_FILTERS_DON_IMPL_H_
39 
40 #include <pcl/features/don.h>
41 
42 //////////////////////////////////////////////////////////////////////////////////////////////
43 template <typename PointInT, typename PointNT, typename PointOutT> bool
45 {
46  // Check if input normals are set
47  if (!input_normals_small_)
48  {
49  PCL_ERROR ("[pcl::%s::initCompute] No input dataset containing small support radius normals was given!\n", getClassName().c_str ());
51  return (false);
52  }
53 
54  if (!input_normals_large_)
55  {
56  PCL_ERROR ("[pcl::%s::initCompute] No input dataset containing large support radius normals was given!\n", getClassName().c_str ());
58  return (false);
59  }
60 
61  // Check if the size of normals is the same as the size of the surface
62  if (input_normals_small_->points.size () != input_->points.size ())
63  {
64  PCL_ERROR ("[pcl::%s::initCompute] ", getClassName().c_str ());
65  PCL_ERROR ("The number of points in the input dataset differs from ");
66  PCL_ERROR ("the number of points in the dataset containing the small support radius normals!\n");
68  return (false);
69  }
70 
71  if (input_normals_large_->points.size () != input_->points.size ())
72  {
73  PCL_ERROR ("[pcl::%s::initCompute] ", getClassName().c_str ());
74  PCL_ERROR ("The number of points in the input dataset differs from ");
75  PCL_ERROR ("the number of points in the dataset containing the large support radius normals!\n");
77  return (false);
78  }
79 
80  return (true);
81 }
82 
83 //////////////////////////////////////////////////////////////////////////////////////////////
84 template <typename PointInT, typename PointNT, typename PointOutT> void
86 {
87  //perform DoN subtraction and return results
88  for (size_t point_id = 0; point_id < input_->points.size (); ++point_id)
89  {
90  output.points[point_id].getNormalVector3fMap () = (input_normals_small_->points[point_id].getNormalVector3fMap ()
91  - input_normals_large_->points[point_id].getNormalVector3fMap ()) / 2.0;
92  if(!pcl_isfinite (output.points[point_id].normal_x) ||
93  !pcl_isfinite (output.points[point_id].normal_y) ||
94  !pcl_isfinite (output.points[point_id].normal_z)){
95  output.points[point_id].getNormalVector3fMap () = Eigen::Vector3f(0,0,0);
96  }
97  output.points[point_id].curvature = output.points[point_id].getNormalVector3fMap ().norm();
98  }
99 }
100 
101 
102 #define PCL_INSTANTIATE_DifferenceOfNormalsEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::DifferenceOfNormalsEstimation<T,NT,OutT>;
103 
104 #endif // PCL_FILTERS_DON_H_