Point Cloud Library (PCL)  1.7.1
radius_outlier_removal.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2012, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  * $Id$
37  *
38  */
39 
40 #ifndef PCL_FILTERS_IMPL_RADIUS_OUTLIER_REMOVAL_H_
41 #define PCL_FILTERS_IMPL_RADIUS_OUTLIER_REMOVAL_H_
42 
43 #include <pcl/filters/radius_outlier_removal.h>
44 #include <pcl/common/io.h>
45 
46 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
47 template <typename PointT> void
49 {
50  std::vector<int> indices;
51  if (keep_organized_)
52  {
53  bool temp = extract_removed_indices_;
54  extract_removed_indices_ = true;
55  applyFilterIndices (indices);
56  extract_removed_indices_ = temp;
57 
58  output = *input_;
59  for (int rii = 0; rii < static_cast<int> (removed_indices_->size ()); ++rii) // rii = removed indices iterator
60  output.points[(*removed_indices_)[rii]].x = output.points[(*removed_indices_)[rii]].y = output.points[(*removed_indices_)[rii]].z = user_filter_value_;
61  if (!pcl_isfinite (user_filter_value_))
62  output.is_dense = false;
63  }
64  else
65  {
66  applyFilterIndices (indices);
67  copyPointCloud (*input_, indices, output);
68  }
69 }
70 
71 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
72 template <typename PointT> void
74 {
75  if (search_radius_ == 0.0)
76  {
77  PCL_ERROR ("[pcl::%s::applyFilter] No radius defined!\n", getClassName ().c_str ());
78  indices.clear ();
79  removed_indices_->clear ();
80  return;
81  }
82 
83  // Initialize the search class
84  if (!searcher_)
85  {
86  if (input_->isOrganized ())
87  searcher_.reset (new pcl::search::OrganizedNeighbor<PointT> ());
88  else
89  searcher_.reset (new pcl::search::KdTree<PointT> (false));
90  }
91  searcher_->setInputCloud (input_);
92 
93  // The arrays to be used
94  std::vector<int> nn_indices (indices_->size ());
95  std::vector<float> nn_dists (indices_->size ());
96  indices.resize (indices_->size ());
97  removed_indices_->resize (indices_->size ());
98  int oii = 0, rii = 0; // oii = output indices iterator, rii = removed indices iterator
99 
100  for (std::vector<int>::const_iterator it = indices_->begin (); it != indices_->end (); ++it)
101  {
102  // Perform the radius search
103  // Note: k includes the query point, so is always at least 1
104  int k = searcher_->radiusSearch (*it, search_radius_, nn_indices, nn_dists);
105 
106  // Points having too few neighbors are outliers and are passed to removed indices
107  // Unless negative was set, then it's the opposite condition
108  if ((!negative_ && k <= min_pts_radius_) || (negative_ && k > min_pts_radius_))
109  {
110  if (extract_removed_indices_)
111  (*removed_indices_)[rii++] = *it;
112  continue;
113  }
114 
115  // Otherwise it was a normal point for output (inlier)
116  indices[oii++] = *it;
117  }
118 
119  // Resize the output arrays
120  indices.resize (oii);
121  removed_indices_->resize (rii);
122 }
123 
124 #define PCL_INSTANTIATE_RadiusOutlierRemoval(T) template class PCL_EXPORTS pcl::RadiusOutlierRemoval<T>;
125 
126 #endif // PCL_FILTERS_IMPL_RADIUS_OUTLIER_REMOVAL_H_
127