Point Cloud Library (PCL)  1.8.1-dev
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
List of all members | Public Types | Public Member Functions
pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT > Class Template Reference

A Difference of Normals (DoN) scale filter implementation for point cloud data. More...

#include <pcl/features/don.h>

+ Inheritance diagram for pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >:

Public Types

typedef boost::shared_ptr
< DifferenceOfNormalsEstimation
< PointInT, PointNT, PointOutT > > 
Ptr
 
typedef boost::shared_ptr
< const
DifferenceOfNormalsEstimation
< PointInT, PointNT, PointOutT > > 
ConstPtr
 
- Public Types inherited from pcl::Feature< PointInT, PointOutT >
typedef PCLBase< PointInT > BaseClass
 
typedef boost::shared_ptr
< Feature< PointInT, PointOutT > > 
Ptr
 
typedef boost::shared_ptr
< const Feature< PointInT,
PointOutT > > 
ConstPtr
 
typedef pcl::search::Search
< PointInT > 
KdTree
 
typedef pcl::search::Search
< PointInT >::Ptr 
KdTreePtr
 
typedef pcl::PointCloud< PointInT > PointCloudIn
 
typedef PointCloudIn::Ptr PointCloudInPtr
 
typedef PointCloudIn::ConstPtr PointCloudInConstPtr
 
typedef pcl::PointCloud
< PointOutT > 
PointCloudOut
 
typedef boost::function< int(size_t,
double, std::vector< int >
&, std::vector< float > &)> 
SearchMethod
 
typedef boost::function< int(const
PointCloudIn &cloud, size_t
index, double, std::vector
< int > &, std::vector< float > &)> 
SearchMethodSurface
 
- Public Types inherited from pcl::PCLBase< PointInT >
typedef pcl::PointCloud< PointInT > PointCloud
 
typedef PointCloud::Ptr PointCloudPtr
 
typedef PointCloud::ConstPtr PointCloudConstPtr
 
typedef boost::shared_ptr
< PointIndices
PointIndicesPtr
 
typedef boost::shared_ptr
< PointIndices const > 
PointIndicesConstPtr
 

Public Member Functions

 DifferenceOfNormalsEstimation ()
 Creates a new Difference of Normals filter. More...
 
virtual ~DifferenceOfNormalsEstimation ()
 
void setNormalScaleSmall (const PointCloudNConstPtr &normals)
 Set the normals calculated using a smaller search radius (scale) for the DoN operator. More...
 
void setNormalScaleLarge (const PointCloudNConstPtr &normals)
 Set the normals calculated using a larger search radius (scale) for the DoN operator. More...
 
virtual void computeFeature (PointCloudOut &output)
 Computes the DoN vector for each point in the input point cloud and outputs the vector cloud to the given output. More...
 
virtual bool initCompute ()
 Initialize for computation of features. More...
 
- Public Member Functions inherited from pcl::Feature< PointInT, PointOutT >
 Feature ()
 Empty constructor. More...
 
virtual ~Feature ()
 Empty destructor. More...
 
void setSearchSurface (const PointCloudInConstPtr &cloud)
 Provide a pointer to a dataset to add additional information to estimate the features for every point in the input dataset. More...
 
PointCloudInConstPtr getSearchSurface () const
 Get a pointer to the surface point cloud dataset. More...
 
void setSearchMethod (const KdTreePtr &tree)
 Provide a pointer to the search object. More...
 
KdTreePtr getSearchMethod () const
 Get a pointer to the search method used. More...
 
double getSearchParameter () const
 Get the internal search parameter. More...
 
void setKSearch (int k)
 Set the number of k nearest neighbors to use for the feature estimation. More...
 
int getKSearch () const
 get the number of k nearest neighbors used for the feature estimation. More...
 
void setRadiusSearch (double radius)
 Set the sphere radius that is to be used for determining the nearest neighbors used for the feature estimation. More...
 
double getRadiusSearch () const
 Get the sphere radius used for determining the neighbors. More...
 
void compute (PointCloudOut &output)
 Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod () More...
 
- Public Member Functions inherited from pcl::PCLBase< PointInT >
 PCLBase ()
 Empty constructor. More...
 
 PCLBase (const PCLBase &base)
 Copy constructor. More...
 
virtual ~PCLBase ()
 Destructor. More...
 
virtual void setInputCloud (const PointCloudConstPtr &cloud)
 Provide a pointer to the input dataset. More...
 
PointCloudConstPtr const getInputCloud () const
 Get a pointer to the input point cloud dataset. More...
 
virtual void setIndices (const IndicesPtr &indices)
 Provide a pointer to the vector of indices that represents the input data. More...
 
virtual void setIndices (const IndicesConstPtr &indices)
 Provide a pointer to the vector of indices that represents the input data. More...
 
virtual void setIndices (const PointIndicesConstPtr &indices)
 Provide a pointer to the vector of indices that represents the input data. More...
 
virtual void setIndices (size_t row_start, size_t col_start, size_t nb_rows, size_t nb_cols)
 Set the indices for the points laying within an interest region of the point cloud. More...
 
IndicesPtr const getIndices ()
 Get a pointer to the vector of indices used. More...
 
IndicesConstPtr const getIndices () const
 Get a pointer to the vector of indices used. More...
 
const PointInT & operator[] (size_t pos) const
 Override PointCloud operator[] to shorten code. More...
 

Additional Inherited Members

- Protected Member Functions inherited from pcl::Feature< PointInT, PointOutT >
const std::string & getClassName () const
 Get a string representation of the name of this class. More...
 
virtual bool deinitCompute ()
 This method should get called after ending the actual computation. More...
 
int searchForNeighbors (size_t index, double parameter, std::vector< int > &indices, std::vector< float > &distances) const
 Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. More...
 
int searchForNeighbors (const PointCloudIn &cloud, size_t index, double parameter, std::vector< int > &indices, std::vector< float > &distances) const
 Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. More...
 
- Protected Member Functions inherited from pcl::PCLBase< PointInT >
bool initCompute ()
 This method should get called before starting the actual computation. More...
 
bool deinitCompute ()
 This method should get called after finishing the actual computation. More...
 
- Protected Attributes inherited from pcl::Feature< PointInT, PointOutT >
std::string feature_name_
 The feature name. More...
 
SearchMethodSurface search_method_surface_
 The search method template for points. More...
 
PointCloudInConstPtr surface_
 An input point cloud describing the surface that is to be used for nearest neighbors estimation. More...
 
KdTreePtr tree_
 A pointer to the spatial search object. More...
 
double search_parameter_
 The actual search parameter (from either search_radius_ or k_). More...
 
double search_radius_
 The nearest neighbors search radius for each point. More...
 
int k_
 The number of K nearest neighbors to use for each point. More...
 
bool fake_surface_
 If no surface is given, we use the input PointCloud as the surface. More...
 
- Protected Attributes inherited from pcl::PCLBase< PointInT >
PointCloudConstPtr input_
 The input point cloud dataset. More...
 
IndicesPtr indices_
 A pointer to the vector of point indices to use. More...
 
bool use_indices_
 Set to true if point indices are used. More...
 
bool fake_indices_
 If no set of indices are given, we construct a set of fake indices that mimic the input PointCloud. More...
 

Detailed Description

template<typename PointInT, typename PointNT, typename PointOutT>
class pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >

A Difference of Normals (DoN) scale filter implementation for point cloud data.

For each point in the point cloud two normals estimated with a differing search radius (sigma_s, sigma_l) are subtracted, the difference of these normals provides a scale-based feature which can be further used to filter the point cloud, somewhat like the Difference of Guassians in image processing, but instead on surfaces. Best results are had when the two search radii are related as sigma_l=10*sigma_s, the octaves between the two search radii can be though of as a filter bandwidth. For appropriate values and thresholds it can be used for surface edge extraction.

Attention
The input normals given by setInputNormalsSmall and setInputNormalsLarge have to match the input point cloud given by setInputCloud. This behavior is different than feature estimation methods that extend FeatureFromNormals, which match the normals with the search surface.
Note
For more information please see Yani Ioannou. Automatic Urban Modelling using Mobile Urban LIDAR Data. Thesis (Master, Computing), Queen's University, March, 2010.
Author
Yani Ioannou.

Definition at line 68 of file don.h.

Member Typedef Documentation

template<typename PointInT , typename PointNT , typename PointOutT >
typedef boost::shared_ptr<const DifferenceOfNormalsEstimation<PointInT, PointNT, PointOutT> > pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >::ConstPtr

Definition at line 79 of file don.h.

template<typename PointInT , typename PointNT , typename PointOutT >
typedef boost::shared_ptr<DifferenceOfNormalsEstimation<PointInT, PointNT, PointOutT> > pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >::Ptr

Definition at line 78 of file don.h.

Constructor & Destructor Documentation

template<typename PointInT , typename PointNT , typename PointOutT >
pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >::DifferenceOfNormalsEstimation ( )
inline

Creates a new Difference of Normals filter.

Definition at line 84 of file don.h.

References pcl::Feature< PointInT, PointOutT >::feature_name_.

template<typename PointInT , typename PointNT , typename PointOutT >
virtual pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >::~DifferenceOfNormalsEstimation ( )
inlinevirtual

Definition at line 89 of file don.h.

Member Function Documentation

template<typename PointInT , typename PointNT , typename PointOutT >
void pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >::computeFeature ( PointCloudOut output)
virtual

Computes the DoN vector for each point in the input point cloud and outputs the vector cloud to the given output.

Parameters
outputthe cloud to output the DoN vector cloud to.

Implements pcl::Feature< PointInT, PointOutT >.

Definition at line 85 of file don.hpp.

References pcl::PointCloud< T >::points.

template<typename PointInT , typename PointNT , typename PointOutT >
bool pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >::initCompute ( )
virtual

Initialize for computation of features.

Returns
true if parameters (input normals, input) are sufficient to perform computation.

Reimplemented from pcl::Feature< PointInT, PointOutT >.

Definition at line 44 of file don.hpp.

template<typename PointInT , typename PointNT , typename PointOutT >
void pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >::setNormalScaleLarge ( const PointCloudNConstPtr &  normals)
inline

Set the normals calculated using a larger search radius (scale) for the DoN operator.

Parameters
normalsthe larger radius (scale) of the DoN filter.

Definition at line 109 of file don.h.

template<typename PointInT , typename PointNT , typename PointOutT >
void pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >::setNormalScaleSmall ( const PointCloudNConstPtr &  normals)
inline

Set the normals calculated using a smaller search radius (scale) for the DoN operator.

Parameters
normalsthe smaller radius (scale) of the DoN filter.

Definition at line 99 of file don.h.


The documentation for this class was generated from the following files: