Point Cloud Library (PCL)  1.9.1-dev
List of all members | Public Types | Public Member Functions
pcl::SampleConsensusModelNormalPlane< PointT, PointNT > Class Template Reference

SampleConsensusModelNormalPlane defines a model for 3D plane segmentation using additional surface normal constraints. More...

#include <pcl/sample_consensus/sac_model_normal_plane.h>

+ Inheritance diagram for pcl::SampleConsensusModelNormalPlane< PointT, PointNT >:

Public Types

using PointCloud = typename SampleConsensusModel< PointT >::PointCloud
 
using PointCloudPtr = typename SampleConsensusModel< PointT >::PointCloudPtr
 
using PointCloudConstPtr = typename SampleConsensusModel< PointT >::PointCloudConstPtr
 
using PointCloudNPtr = typename SampleConsensusModelFromNormals< PointT, PointNT >::PointCloudNPtr
 
using PointCloudNConstPtr = typename SampleConsensusModelFromNormals< PointT, PointNT >::PointCloudNConstPtr
 
using Ptr = boost::shared_ptr< SampleConsensusModelNormalPlane< PointT, PointNT > >
 
- Public Types inherited from pcl::SampleConsensusModelPlane< PointT >
using PointCloud = typename SampleConsensusModel< PointT >::PointCloud
 
using PointCloudPtr = typename SampleConsensusModel< PointT >::PointCloudPtr
 
using PointCloudConstPtr = typename SampleConsensusModel< PointT >::PointCloudConstPtr
 
using Ptr = boost::shared_ptr< SampleConsensusModelPlane< PointT > >
 
- Public Types inherited from pcl::SampleConsensusModel< PointT >
using PointCloud = pcl::PointCloud< PointT >
 
using PointCloudConstPtr = typename PointCloud::ConstPtr
 
using PointCloudPtr = typename PointCloud::Ptr
 
using SearchPtr = typename pcl::search::Search< PointT >::Ptr
 
using Ptr = boost::shared_ptr< SampleConsensusModel< PointT > >
 
using ConstPtr = boost::shared_ptr< const SampleConsensusModel< PointT > >
 
- Public Types inherited from pcl::SampleConsensusModelFromNormals< PointT, PointNT >
using PointCloudNConstPtr = typename pcl::PointCloud< PointNT >::ConstPtr
 
using PointCloudNPtr = typename pcl::PointCloud< PointNT >::Ptr
 
using Ptr = boost::shared_ptr< SampleConsensusModelFromNormals< PointT, PointNT > >
 
using ConstPtr = boost::shared_ptr< const SampleConsensusModelFromNormals< PointT, PointNT > >
 

Public Member Functions

 SampleConsensusModelNormalPlane (const PointCloudConstPtr &cloud, bool random=false)
 Constructor for base SampleConsensusModelNormalPlane. More...
 
 SampleConsensusModelNormalPlane (const PointCloudConstPtr &cloud, const std::vector< int > &indices, bool random=false)
 Constructor for base SampleConsensusModelNormalPlane. More...
 
 ~SampleConsensusModelNormalPlane ()
 Empty destructor. More...
 
void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector< int > &inliers) override
 Select all the points which respect the given model coefficients as inliers. More...
 
int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold) const override
 Count all the points which respect the given model coefficients as inliers. More...
 
void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
 Compute all distances from the cloud data to a given plane model. More...
 
pcl::SacModel getModelType () const override
 Return a unique id for this model (SACMODEL_NORMAL_PLANE). More...
 
- Public Member Functions inherited from pcl::SampleConsensusModelPlane< PointT >
 SampleConsensusModelPlane (const PointCloudConstPtr &cloud, bool random=false)
 Constructor for base SampleConsensusModelPlane. More...
 
 SampleConsensusModelPlane (const PointCloudConstPtr &cloud, const std::vector< int > &indices, bool random=false)
 Constructor for base SampleConsensusModelPlane. More...
 
 ~SampleConsensusModelPlane ()
 Empty destructor. More...
 
bool computeModelCoefficients (const std::vector< int > &samples, Eigen::VectorXf &model_coefficients) const override
 Check whether the given index samples can form a valid plane model, compute the model coefficients from these samples and store them internally in model_coefficients_. More...
 
void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
 Compute all distances from the cloud data to a given plane model. More...
 
void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector< int > &inliers) override
 Select all the points which respect the given model coefficients as inliers. More...
 
int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold) const override
 Count all the points which respect the given model coefficients as inliers. More...
 
void optimizeModelCoefficients (const std::vector< int > &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
 Recompute the plane coefficients using the given inlier set and return them to the user. More...
 
void projectPoints (const std::vector< int > &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
 Create a new point cloud with inliers projected onto the plane model. More...
 
bool doSamplesVerifyModel (const std::set< int > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
 Verify whether a subset of indices verifies the given plane model coefficients. More...
 
pcl::SacModel getModelType () const override
 Return a unique id for this model (SACMODEL_PLANE). More...
 
- Public Member Functions inherited from pcl::SampleConsensusModel< PointT >
 SampleConsensusModel (const PointCloudConstPtr &cloud, bool random=false)
 Constructor for base SampleConsensusModel. More...
 
 SampleConsensusModel (const PointCloudConstPtr &cloud, const std::vector< int > &indices, bool random=false)
 Constructor for base SampleConsensusModel. More...
 
virtual ~SampleConsensusModel ()
 Destructor for base SampleConsensusModel. More...
 
virtual void getSamples (int &iterations, std::vector< int > &samples)
 Get a set of random data samples and return them as point indices. More...
 
virtual void setInputCloud (const PointCloudConstPtr &cloud)
 Provide a pointer to the input dataset. More...
 
PointCloudConstPtr getInputCloud () const
 Get a pointer to the input point cloud dataset. More...
 
void setIndices (const boost::shared_ptr< std::vector< int > > &indices)
 Provide a pointer to the vector of indices that represents the input data. More...
 
void setIndices (const std::vector< int > &indices)
 Provide the vector of indices that represents the input data. More...
 
boost::shared_ptr< std::vector< int > > getIndices () const
 Get a pointer to the vector of indices used. More...
 
const std::string & getClassName () const
 Get a string representation of the name of this class. More...
 
unsigned int getSampleSize () const
 Return the size of a sample from which the model is computed. More...
 
unsigned int getModelSize () const
 Return the number of coefficients in the model. More...
 
void setRadiusLimits (const double &min_radius, const double &max_radius)
 Set the minimum and maximum allowable radius limits for the model (applicable to models that estimate a radius) More...
 
void getRadiusLimits (double &min_radius, double &max_radius) const
 Get the minimum and maximum allowable radius limits for the model as set by the user. More...
 
void setSamplesMaxDist (const double &radius, SearchPtr search)
 Set the maximum distance allowed when drawing random samples. More...
 
void getSamplesMaxDist (double &radius) const
 Get maximum distance allowed when drawing random samples. More...
 
double computeVariance (const std::vector< double > &error_sqr_dists) const
 Compute the variance of the errors to the model. More...
 
double computeVariance () const
 Compute the variance of the errors to the model from the internally estimated vector of distances. More...
 
- Public Member Functions inherited from pcl::SampleConsensusModelFromNormals< PointT, PointNT >
 SampleConsensusModelFromNormals ()
 Empty constructor for base SampleConsensusModelFromNormals. More...
 
virtual ~SampleConsensusModelFromNormals ()
 Destructor. More...
 
void setNormalDistanceWeight (const double w)
 Set the normal angular distance weight. More...
 
double getNormalDistanceWeight () const
 Get the normal angular distance weight. More...
 
void setInputNormals (const PointCloudNConstPtr &normals)
 Provide a pointer to the input dataset that contains the point normals of the XYZ dataset. More...
 
PointCloudNConstPtr getInputNormals () const
 Get a pointer to the normals of the input XYZ point cloud dataset. More...
 

Additional Inherited Members

- Protected Member Functions inherited from pcl::SampleConsensusModel< PointT >
 SampleConsensusModel (bool random=false)
 Empty constructor for base SampleConsensusModel. More...
 
void drawIndexSample (std::vector< int > &sample)
 Fills a sample array with random samples from the indices_ vector. More...
 
void drawIndexSampleRadius (std::vector< int > &sample)
 Fills a sample array with one random sample from the indices_ vector and other random samples that are closer than samples_radius_. More...
 
virtual bool isModelValid (const Eigen::VectorXf &model_coefficients) const
 Check whether a model is valid given the user constraints. More...
 
int rnd ()
 Boost-based random number generator. More...
 
- Protected Attributes inherited from pcl::SampleConsensusModel< PointT >
std::string model_name_
 The model name. More...
 
PointCloudConstPtr input_
 A boost shared pointer to the point cloud data array. More...
 
boost::shared_ptr< std::vector< int > > indices_
 A pointer to the vector of point indices to use. More...
 
double radius_min_
 The minimum and maximum radius limits for the model. More...
 
double radius_max_
 
double samples_radius_
 The maximum distance of subsequent samples from the first (radius search) More...
 
SearchPtr samples_radius_search_
 The search object for picking subsequent samples using radius search. More...
 
std::vector< int > shuffled_indices_
 Data containing a shuffled version of the indices. More...
 
boost::mt19937 rng_alg_
 Boost-based random number generator algorithm. More...
 
std::shared_ptr< boost::uniform_int<> > rng_dist_
 Boost-based random number generator distribution. More...
 
std::shared_ptr< boost::variate_generator< boost::mt19937 &, boost::uniform_int<> > > rng_gen_
 Boost-based random number generator. More...
 
std::vector< double > error_sqr_dists_
 A vector holding the distances to the computed model. More...
 
unsigned int sample_size_
 The size of a sample from which the model is computed. More...
 
unsigned int model_size_
 The number of coefficients in the model. More...
 
- Protected Attributes inherited from pcl::SampleConsensusModelFromNormals< PointT, PointNT >
double normal_distance_weight_
 The relative weight (between 0 and 1) to give to the angular distance (0 to pi/2) between point normals and the plane normal. More...
 
PointCloudNConstPtr normals_
 A pointer to the input dataset that contains the point normals of the XYZ dataset. More...
 
- Static Protected Attributes inherited from pcl::SampleConsensusModel< PointT >
static const unsigned int max_sample_checks_ = 1000
 The maximum number of samples to try until we get a good one. More...
 

Detailed Description

template<typename PointT, typename PointNT>
class pcl::SampleConsensusModelNormalPlane< PointT, PointNT >

SampleConsensusModelNormalPlane defines a model for 3D plane segmentation using additional surface normal constraints.

Basically this means that checking for inliers will not only involve a "distance to model" criterion, but also an additional "maximum angular deviation" between the plane's normal and the inlier points normals.

The model coefficients are defined as:

To set the influence of the surface normals in the inlier estimation process, set the normal weight (0.0-1.0), e.g.:

SampleConsensusModelNormalPlane<pcl::PointXYZ, pcl::Normal> sac_model;
...
sac_model.setNormalDistanceWeight (0.1);
...
Author
Radu B. Rusu and Jared Glover

Definition at line 76 of file sac_model_normal_plane.h.

Member Typedef Documentation

◆ PointCloud

template<typename PointT, typename PointNT>
using pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::PointCloud = typename SampleConsensusModel<PointT>::PointCloud

Definition at line 87 of file sac_model_normal_plane.h.

◆ PointCloudConstPtr

template<typename PointT, typename PointNT>
using pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::PointCloudConstPtr = typename SampleConsensusModel<PointT>::PointCloudConstPtr

Definition at line 89 of file sac_model_normal_plane.h.

◆ PointCloudNConstPtr

template<typename PointT, typename PointNT>
using pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::PointCloudNConstPtr = typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNConstPtr

Definition at line 92 of file sac_model_normal_plane.h.

◆ PointCloudNPtr

template<typename PointT, typename PointNT>
using pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::PointCloudNPtr = typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNPtr

Definition at line 91 of file sac_model_normal_plane.h.

◆ PointCloudPtr

template<typename PointT, typename PointNT>
using pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::PointCloudPtr = typename SampleConsensusModel<PointT>::PointCloudPtr

Definition at line 88 of file sac_model_normal_plane.h.

◆ Ptr

template<typename PointT, typename PointNT>
using pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::Ptr = boost::shared_ptr<SampleConsensusModelNormalPlane<PointT, PointNT> >

Definition at line 94 of file sac_model_normal_plane.h.

Constructor & Destructor Documentation

◆ SampleConsensusModelNormalPlane() [1/2]

template<typename PointT, typename PointNT>
pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::SampleConsensusModelNormalPlane ( const PointCloudConstPtr cloud,
bool  random = false 
)
inline

Constructor for base SampleConsensusModelNormalPlane.

Parameters
[in]cloudthe input point cloud dataset
[in]randomif true set the random seed to the current time, else set to 12345 (default: false)

Definition at line 100 of file sac_model_normal_plane.h.

References pcl::SampleConsensusModel< PointT >::model_name_, pcl::SampleConsensusModel< PointT >::model_size_, and pcl::SampleConsensusModel< PointT >::sample_size_.

◆ SampleConsensusModelNormalPlane() [2/2]

template<typename PointT, typename PointNT>
pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::SampleConsensusModelNormalPlane ( const PointCloudConstPtr cloud,
const std::vector< int > &  indices,
bool  random = false 
)
inline

Constructor for base SampleConsensusModelNormalPlane.

Parameters
[in]cloudthe input point cloud dataset
[in]indicesa vector of point indices to be used from cloud
[in]randomif true set the random seed to the current time, else set to 12345 (default: false)

Definition at line 115 of file sac_model_normal_plane.h.

References pcl::SampleConsensusModel< PointT >::model_name_, pcl::SampleConsensusModel< PointT >::model_size_, and pcl::SampleConsensusModel< PointT >::sample_size_.

◆ ~SampleConsensusModelNormalPlane()

template<typename PointT, typename PointNT>
pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::~SampleConsensusModelNormalPlane ( )
inline

Member Function Documentation

◆ countWithinDistance()

template<typename PointT , typename PointNT >
int pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::countWithinDistance ( const Eigen::VectorXf &  model_coefficients,
const double  threshold 
) const
overridevirtual

Count all the points which respect the given model coefficients as inliers.

Parameters
[in]model_coefficientsthe coefficients of a model that we need to compute distances to
[in]thresholdmaximum admissible distance threshold for determining the inliers from the outliers
Returns
the resultant number of inliers

Implements pcl::SampleConsensusModel< PointT >.

Definition at line 106 of file sac_model_normal_plane.hpp.

References pcl::getAngle3D().

Referenced by pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::~SampleConsensusModelNormalPlane().

◆ getDistancesToModel()

template<typename PointT , typename PointNT >
void pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::getDistancesToModel ( const Eigen::VectorXf &  model_coefficients,
std::vector< double > &  distances 
) const
overridevirtual

Compute all distances from the cloud data to a given plane model.

Parameters
[in]model_coefficientsthe coefficients of a plane model that we need to compute distances to
[out]distancesthe resultant estimated distances

Implements pcl::SampleConsensusModel< PointT >.

Definition at line 151 of file sac_model_normal_plane.hpp.

References pcl::getAngle3D().

Referenced by pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::~SampleConsensusModelNormalPlane().

◆ getModelType()

template<typename PointT, typename PointNT>
pcl::SacModel pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::getModelType ( ) const
inlineoverridevirtual

Return a unique id for this model (SACMODEL_NORMAL_PLANE).

Implements pcl::SampleConsensusModel< PointT >.

Definition at line 159 of file sac_model_normal_plane.h.

References PCL_MAKE_ALIGNED_OPERATOR_NEW, and pcl::SACMODEL_NORMAL_PLANE.

◆ selectWithinDistance()

template<typename PointT , typename PointNT >
void pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::selectWithinDistance ( const Eigen::VectorXf &  model_coefficients,
const double  threshold,
std::vector< int > &  inliers 
)
overridevirtual

Select all the points which respect the given model coefficients as inliers.

Parameters
[in]model_coefficientsthe coefficients of a plane model that we need to compute distances to
[in]thresholda maximum admissible distance threshold for determining the inliers from the outliers
[out]inliersthe resultant model inliers

Implements pcl::SampleConsensusModel< PointT >.

Definition at line 48 of file sac_model_normal_plane.hpp.

References pcl::geometry::distance(), and pcl::getAngle3D().

Referenced by pcl::SampleConsensusModelNormalPlane< PointT, PointNT >::~SampleConsensusModelNormalPlane().


The documentation for this class was generated from the following files: