Point Cloud Library (PCL)  1.9.1-dev
sac.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2009, Willow Garage, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * * Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  * * Redistributions in binary form must reproduce the above
14  * copyright notice, this list of conditions and the following
15  * disclaimer in the documentation and/or other materials provided
16  * with the distribution.
17  * * Neither the name of Willow Garage, Inc. nor the names of its
18  * contributors may be used to endorse or promote products derived
19  * from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $Id$
35  *
36  */
37 
38 #pragma once
39 
40 #include <pcl/cuda/sample_consensus/sac_model.h>
41 #include <pcl/cuda/point_cloud.h>
42 #include <cfloat>
43 //#include <set>
44 
45 namespace pcl
46 {
47  namespace cuda
48  {
49  template <template <typename> class Storage>
51  {
52  using SampleConsensusModelPtr = typename SampleConsensusModel<Storage>::Ptr;
53  using Hypotheses = typename SampleConsensusModel<Storage>::Hypotheses;
54 
55  using Indices = typename SampleConsensusModel<Storage>::Indices;
56  using IndicesPtr = typename SampleConsensusModel<Storage>::IndicesPtr;
57  using IndicesConstPtr = typename SampleConsensusModel<Storage>::IndicesConstPtr;
58 
59  private:
60  /** \brief Constructor for base SAC. */
61  SampleConsensus () {};
62 
63  public:
64  using Coefficients = typename Storage<float>::type;
65  using CoefficientsPtr = boost::shared_ptr <Coefficients>;
66  using CoefficientsConstPtr = boost::shared_ptr <const Coefficients>;
67 
68  using Ptr = boost::shared_ptr<SampleConsensus>;
69  using ConstPtr = boost::shared_ptr<const SampleConsensus>;
70 
71  /** \brief Constructor for base SAC.
72  * \param model a Sample Consensus model
73  */
74  SampleConsensus (const SampleConsensusModelPtr &model) :
75  sac_model_(model), probability_ (0.99), iterations_ (0), threshold_ (DBL_MAX),
76  max_iterations_ (1000)
77  {};
78 
79  /** \brief Constructor for base SAC.
80  * \param model a Sample Consensus model
81  * \param threshold distance to model threshold
82  */
83  SampleConsensus (const SampleConsensusModelPtr &model, float threshold) :
84  sac_model_(model), probability_ (0.99), iterations_ (0), threshold_ (threshold),
85  max_iterations_ (1000)
86  {};
87 
88  /** \brief Destructor for base SAC. */
89  virtual ~SampleConsensus () {};
90 
91  /** \brief Set the distance to model threshold.
92  * \param threshold distance to model threshold
93  */
94  inline void
95  setDistanceThreshold (float threshold) { threshold_ = threshold; }
96 
97  /** \brief Get the distance to model threshold, as set by the user. */
98  inline float
100 
101  /** \brief Set the maximum number of iterations.
102  * \param max_iterations maximum number of iterations
103  */
104  inline void
105  setMaxIterations (int max_iterations) { max_iterations_ = max_iterations; }
106 
107  /** \brief Get the maximum number of iterations, as set by the user. */
108  inline int
110 
111  /** \brief Set the desired probability of choosing at least one sample free from
112  * outliers.
113  * \param probability the desired probability of choosing at least one sample free
114  * from outliers
115  * \note internally, the probability is set to 99% (0.99) by default.
116  */
117  inline void
118  setProbability (float probability) { probability_ = probability; }
119 
120  /** \brief Obtain the probability of choosing at least one sample free from outliers,
121  * as set by the user.
122  */
123  inline float
124  getProbability () { return (probability_); }
125 
126  /** \brief Compute the actual model. Pure virtual. */
127  virtual bool
128  computeModel (int debug_verbosity_level = 0) = 0;
129 
130  /* \brief Get a set of randomly selected indices.
131  * \param indices the input indices vector
132  * \param nr_samples the desired number of point indices to randomly select
133  * \param indices_subset the resultant output set of randomly selected indices
134  */
135 /* inline void
136  getRandomSamples (const IndicesPtr &indices, std::size_t nr_samples,
137  std::set<int> &indices_subset)
138  {
139  indices_subset.clear ();
140  while (indices_subset.size () < nr_samples)
141  indices_subset.insert ((*indices)[(int) (indices->size () * (rand () / (RAND_MAX + 1.0)))]);
142  }*/
143 
144  /** \brief Return the best model found so far.
145  * \param model the resultant model
146  */
147  inline void
148  getModel (Indices &model) { model = model_; }
149 
150  /** \brief Return the best set of inliers found so far for this model.
151  */
152  // inline void
153  // getInliers (std::vector<int> &inliers) { inliers = inliers_; }
154  inline IndicesPtr
155  getInliers () { return inliers_; }
156 
157  // inline void
158  // getInliersStencil (Indices &inliers) { inliers = inliers_stencil_; }
159  inline IndicesPtr
161 
162  /** \brief Return the model coefficients of the best model found so far.
163  * \param model_coefficients the resultant model coefficients
164  */
165  inline void
166  getModelCoefficients (Coefficients &model_coefficients)
167  {
168  model_coefficients = model_coefficients_;
169  }
170 
171  protected:
172  /** \brief The underlying data model used (what is it that we attempt to search for). */
173  SampleConsensusModelPtr sac_model_;
174 
175  /** \brief The model found after the last computeModel () as point cloud indices. */
176  Indices model_;
177 
178  /** \brief The indices of the points that were chosen as inliers after the last call. */
179  IndicesPtr inliers_;
180  IndicesPtr inliers_stencil_;
181 
182  /** \brief The coefficients of our model computed directly from the model found. */
184 
185  /** \brief Desired probability of choosing at least one sample free from outliers. */
187 
188  /** \brief Total number of internal loop iterations that we've done so far. */
190 
191  /** \brief Distance to model threshold. */
192  float threshold_;
193 
194  /** \brief Maximum number of iterations before giving up. */
196  };
197  } // namespace
198 } // namespace
int getMaxIterations()
Get the maximum number of iterations, as set by the user.
Definition: sac.h:109
SampleConsensus(const SampleConsensusModelPtr &model, float threshold)
Constructor for base SAC.
Definition: sac.h:83
virtual ~SampleConsensus()
Destructor for base SAC.
Definition: sac.h:89
virtual bool computeModel(int debug_verbosity_level=0)=0
Compute the actual model.
void getModelCoefficients(Coefficients &model_coefficients)
Return the model coefficients of the best model found so far.
Definition: sac.h:166
typename Storage< float >::type Coefficients
Definition: sac.h:64
boost::shared_ptr< const SampleConsensus > ConstPtr
Definition: sac.h:69
float getProbability()
Obtain the probability of choosing at least one sample free from outliers, as set by the user...
Definition: sac.h:124
boost::shared_ptr< Coefficients > CoefficientsPtr
Definition: sac.h:65
This file defines compatibility wrappers for low level I/O functions.
Definition: convolution.h:45
void setDistanceThreshold(float threshold)
Set the distance to model threshold.
Definition: sac.h:95
boost::shared_ptr< SampleConsensusModel > Ptr
Definition: sac_model.h:94
float probability_
Desired probability of choosing at least one sample free from outliers.
Definition: sac.h:186
SampleConsensus(const SampleConsensusModelPtr &model)
Constructor for base SAC.
Definition: sac.h:74
IndicesPtr getInliers()
Return the best set of inliers found so far for this model.
Definition: sac.h:155
Coefficients model_coefficients_
The coefficients of our model computed directly from the model found.
Definition: sac.h:183
int iterations_
Total number of internal loop iterations that we&#39;ve done so far.
Definition: sac.h:189
void setMaxIterations(int max_iterations)
Set the maximum number of iterations.
Definition: sac.h:105
void getModel(Indices &model)
Return the best model found so far.
Definition: sac.h:148
void setProbability(float probability)
Set the desired probability of choosing at least one sample free from outliers.
Definition: sac.h:118
typename Storage< int >::type Indices
Definition: sac_model.h:97
IndicesPtr inliers_
The indices of the points that were chosen as inliers after the last call.
Definition: sac.h:179
boost::shared_ptr< const typename Storage< int >::type > IndicesConstPtr
Definition: sac_model.h:99
boost::shared_ptr< typename Storage< int >::type > IndicesPtr
Definition: sac_model.h:98
float getDistanceThreshold()
Get the distance to model threshold, as set by the user.
Definition: sac.h:99
float threshold_
Distance to model threshold.
Definition: sac.h:192
int max_iterations_
Maximum number of iterations before giving up.
Definition: sac.h:195
IndicesPtr inliers_stencil_
Definition: sac.h:180
boost::shared_ptr< SampleConsensus > Ptr
Definition: sac.h:68
boost::shared_ptr< const Coefficients > CoefficientsConstPtr
Definition: sac.h:66
SampleConsensusModelPtr sac_model_
The underlying data model used (what is it that we attempt to search for).
Definition: sac.h:173
typename Storage< float4 >::type Hypotheses
Definition: sac_model.h:105
IndicesPtr getInliersStencil()
Definition: sac.h:160
Indices model_
The model found after the last computeModel () as point cloud indices.
Definition: sac.h:176