Point Cloud Library (PCL)  1.9.1-dev
gp3.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of Willow Garage, Inc. nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  * $Id$
37  *
38  */
39 
40 #pragma once
41 
42 // PCL includes
43 #include <pcl/surface/reconstruction.h>
44 #include <pcl/surface/boost.h>
45 
46 #include <pcl/conversions.h>
47 #include <pcl/kdtree/kdtree.h>
48 #include <pcl/PolygonMesh.h>
49 
50 #include <fstream>
51 #include <iostream>
52 
53 
54 
55 namespace pcl
56 {
57  /** \brief Returns if a point X is visible from point R (or the origin)
58  * when taking into account the segment between the points S1 and S2
59  * \param X 2D coordinate of the point
60  * \param S1 2D coordinate of the segment's first point
61  * \param S2 2D coordinate of the segment's second point
62  * \param R 2D coordinate of the reference point (defaults to 0,0)
63  * \ingroup surface
64  */
65  inline bool
66  isVisible (const Eigen::Vector2f &X, const Eigen::Vector2f &S1, const Eigen::Vector2f &S2,
67  const Eigen::Vector2f &R = Eigen::Vector2f::Zero ())
68  {
69  double a0 = S1[1] - S2[1];
70  double b0 = S2[0] - S1[0];
71  double c0 = S1[0]*S2[1] - S2[0]*S1[1];
72  double a1 = -X[1];
73  double b1 = X[0];
74  double c1 = 0;
75  if (R != Eigen::Vector2f::Zero())
76  {
77  a1 += R[1];
78  b1 -= R[0];
79  c1 = R[0]*X[1] - X[0]*R[1];
80  }
81  double div = a0*b1 - b0*a1;
82  double x = (b0*c1 - b1*c0) / div;
83  double y = (a1*c0 - a0*c1) / div;
84 
85  bool intersection_outside_XR;
86  if (R == Eigen::Vector2f::Zero())
87  {
88  if (X[0] > 0)
89  intersection_outside_XR = (x <= 0) || (x >= X[0]);
90  else if (X[0] < 0)
91  intersection_outside_XR = (x >= 0) || (x <= X[0]);
92  else if (X[1] > 0)
93  intersection_outside_XR = (y <= 0) || (y >= X[1]);
94  else if (X[1] < 0)
95  intersection_outside_XR = (y >= 0) || (y <= X[1]);
96  else
97  intersection_outside_XR = true;
98  }
99  else
100  {
101  if (X[0] > R[0])
102  intersection_outside_XR = (x <= R[0]) || (x >= X[0]);
103  else if (X[0] < R[0])
104  intersection_outside_XR = (x >= R[0]) || (x <= X[0]);
105  else if (X[1] > R[1])
106  intersection_outside_XR = (y <= R[1]) || (y >= X[1]);
107  else if (X[1] < R[1])
108  intersection_outside_XR = (y >= R[1]) || (y <= X[1]);
109  else
110  intersection_outside_XR = true;
111  }
112  if (intersection_outside_XR)
113  return true;
114  if (S1[0] > S2[0])
115  return (x <= S2[0]) || (x >= S1[0]);
116  if (S1[0] < S2[0])
117  return (x >= S2[0]) || (x <= S1[0]);
118  if (S1[1] > S2[1])
119  return (y <= S2[1]) || (y >= S1[1]);
120  if (S1[1] < S2[1])
121  return (y >= S2[1]) || (y <= S1[1]);
122  return false;
123  }
124 
125  /** \brief GreedyProjectionTriangulation is an implementation of a greedy triangulation algorithm for 3D points
126  * based on local 2D projections. It assumes locally smooth surfaces and relatively smooth transitions between
127  * areas with different point densities.
128  * \author Zoltan Csaba Marton
129  * \ingroup surface
130  */
131  template <typename PointInT>
133  {
134  public:
135  using Ptr = boost::shared_ptr<GreedyProjectionTriangulation<PointInT> >;
136  using ConstPtr = boost::shared_ptr<const GreedyProjectionTriangulation<PointInT> >;
137 
141 
143  using KdTreePtr = typename KdTree::Ptr;
144 
148 
149  enum GP3Type
150  {
151  NONE = -1, // not-defined
152  FREE = 0,
153  FRINGE = 1,
154  BOUNDARY = 2,
156  };
157 
158  /** \brief Empty constructor. */
160  mu_ (0),
161  search_radius_ (0), // must be set by user
162  nnn_ (100),
163  minimum_angle_ (M_PI/18), // 10 degrees
164  maximum_angle_ (2*M_PI/3), // 120 degrees
165  eps_angle_(M_PI/4), //45 degrees,
166  consistent_(false),
167  consistent_ordering_ (false),
168  angles_ (),
169  R_ (),
170  is_current_free_ (false),
171  current_index_ (),
172  prev_is_ffn_ (false),
173  prev_is_sfn_ (false),
174  next_is_ffn_ (false),
175  next_is_sfn_ (false),
176  changed_1st_fn_ (false),
177  changed_2nd_fn_ (false),
178  new2boundary_ (),
179  already_connected_ (false)
180  {};
181 
182  /** \brief Set the multiplier of the nearest neighbor distance to obtain the final search radius for each point
183  * (this will make the algorithm adapt to different point densities in the cloud).
184  * \param[in] mu the multiplier
185  */
186  inline void
187  setMu (double mu) { mu_ = mu; }
188 
189  /** \brief Get the nearest neighbor distance multiplier. */
190  inline double
191  getMu () const { return (mu_); }
192 
193  /** \brief Set the maximum number of nearest neighbors to be searched for.
194  * \param[in] nnn the maximum number of nearest neighbors
195  */
196  inline void
197  setMaximumNearestNeighbors (int nnn) { nnn_ = nnn; }
198 
199  /** \brief Get the maximum number of nearest neighbors to be searched for. */
200  inline int
201  getMaximumNearestNeighbors () const { return (nnn_); }
202 
203  /** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for triangulating.
204  * \param[in] radius the sphere radius that is to contain all k-nearest neighbors
205  * \note This distance limits the maximum edge length!
206  */
207  inline void
208  setSearchRadius (double radius) { search_radius_ = radius; }
209 
210  /** \brief Get the sphere radius used for determining the k-nearest neighbors. */
211  inline double
212  getSearchRadius () const { return (search_radius_); }
213 
214  /** \brief Set the minimum angle each triangle should have.
215  * \param[in] minimum_angle the minimum angle each triangle should have
216  * \note As this is a greedy approach, this will have to be violated from time to time
217  */
218  inline void
219  setMinimumAngle (double minimum_angle) { minimum_angle_ = minimum_angle; }
220 
221  /** \brief Get the parameter for distance based weighting of neighbors. */
222  inline double
223  getMinimumAngle () const { return (minimum_angle_); }
224 
225  /** \brief Set the maximum angle each triangle can have.
226  * \param[in] maximum_angle the maximum angle each triangle can have
227  * \note For best results, its value should be around 120 degrees
228  */
229  inline void
230  setMaximumAngle (double maximum_angle) { maximum_angle_ = maximum_angle; }
231 
232  /** \brief Get the parameter for distance based weighting of neighbors. */
233  inline double
234  getMaximumAngle () const { return (maximum_angle_); }
235 
236  /** \brief Don't consider points for triangulation if their normal deviates more than this value from the query point's normal.
237  * \param[in] eps_angle maximum surface angle
238  * \note As normal estimation methods usually give smooth transitions at sharp edges, this ensures correct triangulation
239  * by avoiding connecting points from one side to points from the other through forcing the use of the edge points.
240  */
241  inline void
242  setMaximumSurfaceAngle (double eps_angle) { eps_angle_ = eps_angle; }
243 
244  /** \brief Get the maximum surface angle. */
245  inline double
246  getMaximumSurfaceAngle () const { return (eps_angle_); }
247 
248  /** \brief Set the flag if the input normals are oriented consistently.
249  * \param[in] consistent set it to true if the normals are consistently oriented
250  */
251  inline void
252  setNormalConsistency (bool consistent) { consistent_ = consistent; }
253 
254  /** \brief Get the flag for consistently oriented normals. */
255  inline bool
256  getNormalConsistency () const { return (consistent_); }
257 
258  /** \brief Set the flag to order the resulting triangle vertices consistently (positive direction around normal).
259  * @note Assumes consistently oriented normals (towards the viewpoint) -- see setNormalConsistency ()
260  * \param[in] consistent_ordering set it to true if triangle vertices should be ordered consistently
261  */
262  inline void
263  setConsistentVertexOrdering (bool consistent_ordering) { consistent_ordering_ = consistent_ordering; }
264 
265  /** \brief Get the flag signaling consistently ordered triangle vertices. */
266  inline bool
268 
269  /** \brief Get the state of each point after reconstruction.
270  * \note Options are defined as constants: FREE, FRINGE, COMPLETED, BOUNDARY and NONE
271  */
272  inline std::vector<int>
273  getPointStates () const { return (state_); }
274 
275  /** \brief Get the ID of each point after reconstruction.
276  * \note parts are numbered from 0, a -1 denotes unconnected points
277  */
278  inline std::vector<int>
279  getPartIDs () const { return (part_); }
280 
281 
282  /** \brief Get the sfn list. */
283  inline std::vector<int>
284  getSFN () const { return (sfn_); }
285 
286  /** \brief Get the ffn list. */
287  inline std::vector<int>
288  getFFN () const { return (ffn_); }
289 
290  protected:
291  /** \brief The nearest neighbor distance multiplier to obtain the final search radius. */
292  double mu_;
293 
294  /** \brief The nearest neighbors search radius for each point and the maximum edge length. */
296 
297  /** \brief The maximum number of nearest neighbors accepted by searching. */
298  int nnn_;
299 
300  /** \brief The preferred minimum angle for the triangles. */
302 
303  /** \brief The maximum angle for the triangles. */
305 
306  /** \brief Maximum surface angle. */
307  double eps_angle_;
308 
309  /** \brief Set this to true if the normals of the input are consistently oriented. */
311 
312  /** \brief Set this to true if the output triangle vertices should be consistently oriented. */
314 
315  private:
316  /** \brief Struct for storing the angles to nearest neighbors **/
317  struct nnAngle
318  {
319  double angle;
320  int index;
321  int nnIndex;
322  bool visible;
323  };
324 
325  /** \brief Struct for storing the edges starting from a fringe point **/
326  struct doubleEdge
327  {
328  doubleEdge () : index (0) {}
329  int index;
330  Eigen::Vector2f first;
331  Eigen::Vector2f second;
332  };
333 
334  // Variables made global to decrease the number of parameters to helper functions
335 
336  /** \brief Temporary variable to store a triangle (as a set of point indices) **/
337  pcl::Vertices triangle_;
338  /** \brief Temporary variable to store point coordinates **/
339  std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > coords_;
340 
341  /** \brief A list of angles to neighbors **/
342  std::vector<nnAngle> angles_;
343  /** \brief Index of the current query point **/
344  int R_;
345  /** \brief List of point states **/
346  std::vector<int> state_;
347  /** \brief List of sources **/
348  std::vector<int> source_;
349  /** \brief List of fringe neighbors in one direction **/
350  std::vector<int> ffn_;
351  /** \brief List of fringe neighbors in other direction **/
352  std::vector<int> sfn_;
353  /** \brief Connected component labels for each point **/
354  std::vector<int> part_;
355  /** \brief Points on the outer edge from which the mesh has to be grown **/
356  std::vector<int> fringe_queue_;
357 
358  /** \brief Flag to set if the current point is free **/
359  bool is_current_free_;
360  /** \brief Current point's index **/
361  int current_index_;
362  /** \brief Flag to set if the previous point is the first fringe neighbor **/
363  bool prev_is_ffn_;
364  /** \brief Flag to set if the next point is the second fringe neighbor **/
365  bool prev_is_sfn_;
366  /** \brief Flag to set if the next point is the first fringe neighbor **/
367  bool next_is_ffn_;
368  /** \brief Flag to set if the next point is the second fringe neighbor **/
369  bool next_is_sfn_;
370  /** \brief Flag to set if the first fringe neighbor was changed **/
371  bool changed_1st_fn_;
372  /** \brief Flag to set if the second fringe neighbor was changed **/
373  bool changed_2nd_fn_;
374  /** \brief New boundary point **/
375  int new2boundary_;
376 
377  /** \brief Flag to set if the next neighbor was already connected in the previous step.
378  * To avoid inconsistency it should not be connected again.
379  */
380  bool already_connected_;
381 
382  /** \brief Point coordinates projected onto the plane defined by the point normal **/
383  Eigen::Vector3f proj_qp_;
384  /** \brief First coordinate vector of the 2D coordinate frame **/
385  Eigen::Vector3f u_;
386  /** \brief Second coordinate vector of the 2D coordinate frame **/
387  Eigen::Vector3f v_;
388  /** \brief 2D coordinates of the first fringe neighbor **/
389  Eigen::Vector2f uvn_ffn_;
390  /** \brief 2D coordinates of the second fringe neighbor **/
391  Eigen::Vector2f uvn_sfn_;
392  /** \brief 2D coordinates of the first fringe neighbor of the next point **/
393  Eigen::Vector2f uvn_next_ffn_;
394  /** \brief 2D coordinates of the second fringe neighbor of the next point **/
395  Eigen::Vector2f uvn_next_sfn_;
396 
397  /** \brief Temporary variable to store 3 coordinates **/
398  Eigen::Vector3f tmp_;
399 
400  /** \brief The actual surface reconstruction method.
401  * \param[out] output the resultant polygonal mesh
402  */
403  void
404  performReconstruction (pcl::PolygonMesh &output) override;
405 
406  /** \brief The actual surface reconstruction method.
407  * \param[out] polygons the resultant polygons, as a set of vertices. The Vertices structure contains an array of point indices.
408  */
409  void
410  performReconstruction (std::vector<pcl::Vertices> &polygons) override;
411 
412  /** \brief The actual surface reconstruction method.
413  * \param[out] polygons the resultant polygons, as a set of vertices. The Vertices structure contains an array of point indices.
414  */
415  bool
416  reconstructPolygons (std::vector<pcl::Vertices> &polygons);
417 
418  /** \brief Class get name method. */
419  std::string
420  getClassName () const override { return ("GreedyProjectionTriangulation"); }
421 
422  /** \brief Forms a new triangle by connecting the current neighbor to the query point
423  * and the previous neighbor
424  * \param[out] polygons the polygon mesh to be updated
425  * \param[in] prev_index index of the previous point
426  * \param[in] next_index index of the next point
427  * \param[in] next_next_index index of the point after the next one
428  * \param[in] uvn_current 2D coordinate of the current point
429  * \param[in] uvn_prev 2D coordinates of the previous point
430  * \param[in] uvn_next 2D coordinates of the next point
431  */
432  void
433  connectPoint (std::vector<pcl::Vertices> &polygons,
434  const int prev_index,
435  const int next_index,
436  const int next_next_index,
437  const Eigen::Vector2f &uvn_current,
438  const Eigen::Vector2f &uvn_prev,
439  const Eigen::Vector2f &uvn_next);
440 
441  /** \brief Whenever a query point is part of a boundary loop containing 3 points, that triangle is created
442  * (called if angle constraints make it possible)
443  * \param[out] polygons the polygon mesh to be updated
444  */
445  void
446  closeTriangle (std::vector<pcl::Vertices> &polygons);
447 
448  /** \brief Get the list of containing triangles for each vertex in a PolygonMesh
449  * \param[in] polygonMesh the input polygon mesh
450  */
451  std::vector<std::vector<size_t> >
452  getTriangleList (const pcl::PolygonMesh &input);
453 
454  /** \brief Add a new triangle to the current polygon mesh
455  * \param[in] a index of the first vertex
456  * \param[in] b index of the second vertex
457  * \param[in] c index of the third vertex
458  * \param[out] polygons the polygon mesh to be updated
459  */
460  inline void
461  addTriangle (int a, int b, int c, std::vector<pcl::Vertices> &polygons)
462  {
463  triangle_.vertices.resize (3);
464  if (consistent_ordering_)
465  {
466  const PointInT p = input_->at (indices_->at (a));
467  const Eigen::Vector3f pv = p.getVector3fMap ();
468  if (p.getNormalVector3fMap ().dot (
469  (pv - input_->at (indices_->at (b)).getVector3fMap ()).cross (
470  pv - input_->at (indices_->at (c)).getVector3fMap ()) ) > 0)
471  {
472  triangle_.vertices[0] = a;
473  triangle_.vertices[1] = b;
474  triangle_.vertices[2] = c;
475  }
476  else
477  {
478  triangle_.vertices[0] = a;
479  triangle_.vertices[1] = c;
480  triangle_.vertices[2] = b;
481  }
482  }
483  else
484  {
485  triangle_.vertices[0] = a;
486  triangle_.vertices[1] = b;
487  triangle_.vertices[2] = c;
488  }
489  polygons.push_back (triangle_);
490  }
491 
492  /** \brief Add a new vertex to the advancing edge front and set its source point
493  * \param[in] v index of the vertex that was connected
494  * \param[in] s index of the source point
495  */
496  inline void
497  addFringePoint (int v, int s)
498  {
499  source_[v] = s;
500  part_[v] = part_[s];
501  fringe_queue_.push_back(v);
502  }
503 
504  /** \brief Function for ascending sort of nnAngle, taking visibility into account
505  * (angles to visible neighbors will be first, to the invisible ones after).
506  * \param[in] a1 the first angle
507  * \param[in] a2 the second angle
508  */
509  static inline bool
510  nnAngleSortAsc (const nnAngle& a1, const nnAngle& a2)
511  {
512  if (a1.visible == a2.visible)
513  return (a1.angle < a2.angle);
514  return a1.visible;
515  }
516  };
517 
518 } // namespace pcl
519 
520 #ifdef PCL_NO_PRECOMPILE
521 #include <pcl/surface/impl/gp3.hpp>
522 #endif
double getMaximumAngle() const
Get the parameter for distance based weighting of neighbors.
Definition: gp3.h:234
void setConsistentVertexOrdering(bool consistent_ordering)
Set the flag to order the resulting triangle vertices consistently (positive direction around normal)...
Definition: gp3.h:263
bool getConsistentVertexOrdering() const
Get the flag signaling consistently ordered triangle vertices.
Definition: gp3.h:267
std::vector< uint32_t > vertices
Definition: Vertices.h:19
This file defines compatibility wrappers for low level I/O functions.
Definition: convolution.h:45
double getMinimumAngle() const
Get the parameter for distance based weighting of neighbors.
Definition: gp3.h:223
void setMu(double mu)
Set the multiplier of the nearest neighbor distance to obtain the final search radius for each point ...
Definition: gp3.h:187
typename PointCloudIn::ConstPtr PointCloudInConstPtr
Definition: gp3.h:147
bool isVisible(const Eigen::Vector2f &X, const Eigen::Vector2f &S1, const Eigen::Vector2f &S2, const Eigen::Vector2f &R=Eigen::Vector2f::Zero())
Returns if a point X is visible from point R (or the origin) when taking into account the segment bet...
Definition: gp3.h:66
IndicesPtr indices_
A pointer to the vector of point indices to use.
Definition: pcl_base.h:154
double getMaximumSurfaceAngle() const
Get the maximum surface angle.
Definition: gp3.h:246
std::vector< int > getSFN() const
Get the sfn list.
Definition: gp3.h:284
bool getNormalConsistency() const
Get the flag for consistently oriented normals.
Definition: gp3.h:256
Describes a set of vertices in a polygon mesh, by basically storing an array of indices.
Definition: Vertices.h:14
std::vector< int > getPartIDs() const
Get the ID of each point after reconstruction.
Definition: gp3.h:279
double getMu() const
Get the nearest neighbor distance multiplier.
Definition: gp3.h:191
double mu_
The nearest neighbor distance multiplier to obtain the final search radius.
Definition: gp3.h:292
boost::shared_ptr< const GreedyProjectionTriangulation< PointInT > > ConstPtr
Definition: gp3.h:136
double getSearchRadius() const
Get the sphere radius used for determining the k-nearest neighbors.
Definition: gp3.h:212
int nnn_
The maximum number of nearest neighbors accepted by searching.
Definition: gp3.h:298
typename KdTree::Ptr KdTreePtr
Definition: gp3.h:143
boost::shared_ptr< KdTree< PointT > > Ptr
Definition: kdtree.h:70
void setMaximumNearestNeighbors(int nnn)
Set the maximum number of nearest neighbors to be searched for.
Definition: gp3.h:197
double minimum_angle_
The preferred minimum angle for the triangles.
Definition: gp3.h:301
void setMinimumAngle(double minimum_angle)
Set the minimum angle each triangle should have.
Definition: gp3.h:219
boost::shared_ptr< PointCloud< PointInT > > Ptr
Definition: point_cloud.h:429
GreedyProjectionTriangulation is an implementation of a greedy triangulation algorithm for 3D points ...
Definition: gp3.h:132
bool consistent_
Set this to true if the normals of the input are consistently oriented.
Definition: gp3.h:310
int getMaximumNearestNeighbors() const
Get the maximum number of nearest neighbors to be searched for.
Definition: gp3.h:201
GreedyProjectionTriangulation()
Empty constructor.
Definition: gp3.h:159
MeshConstruction represents a base surface reconstruction class.
void setMaximumSurfaceAngle(double eps_angle)
Don&#39;t consider points for triangulation if their normal deviates more than this value from the query ...
Definition: gp3.h:242
double eps_angle_
Maximum surface angle.
Definition: gp3.h:307
std::vector< int > getFFN() const
Get the ffn list.
Definition: gp3.h:288
void setSearchRadius(double radius)
Set the sphere radius that is to be used for determining the k-nearest neighbors used for triangulati...
Definition: gp3.h:208
void setMaximumAngle(double maximum_angle)
Set the maximum angle each triangle can have.
Definition: gp3.h:230
boost::shared_ptr< GreedyProjectionTriangulation< PointInT > > Ptr
Definition: gp3.h:135
boost::shared_ptr< const PointCloud< PointInT > > ConstPtr
Definition: point_cloud.h:430
void setNormalConsistency(bool consistent)
Set the flag if the input normals are oriented consistently.
Definition: gp3.h:252
double maximum_angle_
The maximum angle for the triangles.
Definition: gp3.h:304
typename PointCloudIn::Ptr PointCloudInPtr
Definition: gp3.h:146
PointCloudConstPtr input_
The input point cloud dataset.
Definition: pcl_base.h:151
bool consistent_ordering_
Set this to true if the output triangle vertices should be consistently oriented. ...
Definition: gp3.h:313
double search_radius_
The nearest neighbors search radius for each point and the maximum edge length.
Definition: gp3.h:295
std::vector< int > getPointStates() const
Get the state of each point after reconstruction.
Definition: gp3.h:273
KdTree represents the base spatial locator class for kd-tree implementations.
Definition: kdtree.h:55