Point Cloud Library (PCL)  1.9.1-dev
keypoint.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of Willow Garage, Inc. nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #pragma once
39 
40 // PCL includes
41 #include <pcl/pcl_base.h>
42 #include <boost/function.hpp>
43 #include <boost/bind.hpp>
44 #include <pcl/search/pcl_search.h>
45 #include <pcl/pcl_config.h>
46 
47 namespace pcl
48 {
49  /** \brief @b Keypoint represents the base class for key points.
50  * \author Bastian Steder
51  * \ingroup keypoints
52  */
53  template <typename PointInT, typename PointOutT>
54  class Keypoint : public PCLBase<PointInT>
55  {
56  public:
57  typedef boost::shared_ptr<Keypoint<PointInT, PointOutT> > Ptr;
58  typedef boost::shared_ptr<const Keypoint<PointInT, PointOutT> > ConstPtr;
59 
62 
65  typedef typename KdTree::Ptr KdTreePtr;
70  typedef boost::function<int (int, double, std::vector<int> &, std::vector<float> &)> SearchMethod;
71  typedef boost::function<int (const PointCloudIn &cloud, int index, double, std::vector<int> &, std::vector<float> &)> SearchMethodSurface;
72 
73  public:
74  /** \brief Empty constructor. */
75  Keypoint () :
76  BaseClass (),
78  surface_ (),
79  tree_ (),
80  search_parameter_ (0),
81  search_radius_ (0),
82  k_ (0)
83  {};
84 
85  /** \brief Empty destructor */
86  ~Keypoint () {}
87 
88  /** \brief Provide a pointer to the input dataset that we need to estimate features at every point for.
89  * \param cloud the const boost shared pointer to a PointCloud message
90  */
91  virtual void
92  setSearchSurface (const PointCloudInConstPtr &cloud) { surface_ = cloud; }
93 
94  /** \brief Get a pointer to the surface point cloud dataset. */
95  inline PointCloudInConstPtr
96  getSearchSurface () { return (surface_); }
97 
98  /** \brief Provide a pointer to the search object.
99  * \param tree a pointer to the spatial search object.
100  */
101  inline void
102  setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
103 
104  /** \brief Get a pointer to the search method used. */
105  inline KdTreePtr
106  getSearchMethod () { return (tree_); }
107 
108  /** \brief Get the internal search parameter. */
109  inline double
111 
112  /** \brief Set the number of k nearest neighbors to use for the feature estimation.
113  * \param k the number of k-nearest neighbors
114  */
115  inline void
116  setKSearch (int k) { k_ = k; }
117 
118  /** \brief get the number of k nearest neighbors used for the feature estimation. */
119  inline int
120  getKSearch () { return (k_); }
121 
122  /** \brief Set the sphere radius that is to be used for determining the nearest neighbors used for the
123  * key point detection
124  * \param radius the sphere radius used as the maximum distance to consider a point a neighbor
125  */
126  inline void
127  setRadiusSearch (double radius) { search_radius_ = radius; }
128 
129  /** \brief Get the sphere radius used for determining the neighbors. */
130  inline double
132 
133  /** \brief \return the keypoints indices in the input cloud.
134  * \note not all the daughter classes populate the keypoints indices so check emptiness before use.
135  */
138 
139  /** \brief Base method for key point detection for all points given in <setInputCloud (), setIndices ()> using
140  * the surface in setSearchSurface () and the spatial locator in setSearchMethod ()
141  * \param output the resultant point cloud model dataset containing the estimated features
142  */
143  inline void
144  compute (PointCloudOut &output);
145 
146  /** \brief Search for k-nearest neighbors using the spatial locator from \a setSearchmethod, and the given surface
147  * from \a setSearchSurface.
148  * \param index the index of the query point
149  * \param parameter the search parameter (either k or radius)
150  * \param indices the resultant vector of indices representing the k-nearest neighbors
151  * \param distances the resultant vector of distances representing the distances from the query point to the
152  * k-nearest neighbors
153  */
154  inline int
155  searchForNeighbors (int index, double parameter, std::vector<int> &indices, std::vector<float> &distances) const
156  {
157  if (surface_ == input_) // if the two surfaces are the same
158  return (search_method_ (index, parameter, indices, distances));
159  else
160  return (search_method_surface_ (*input_, index, parameter, indices, distances));
161  }
162 
163  protected:
165 
166  virtual bool
167  initCompute ();
168 
169  /** \brief The key point detection method's name. */
170  std::string name_;
171 
172  /** \brief The search method template for indices. */
174 
175  /** \brief The search method template for points. */
177 
178  /** \brief An input point cloud describing the surface that is to be used for nearest neighbors estimation. */
179  PointCloudInConstPtr surface_;
180 
181  /** \brief A pointer to the spatial search object. */
182  KdTreePtr tree_;
183 
184  /** \brief The actual search parameter (casted from either \a search_radius_ or \a k_). */
186 
187  /** \brief The nearest neighbors search radius for each point. */
189 
190  /** \brief The number of K nearest neighbors to use for each point. */
191  int k_;
192 
193  /** \brief Indices of the keypoints in the input cloud. */
195 
196  /** \brief Get a string representation of the name of this class. */
197  inline const std::string&
198  getClassName () const { return (name_); }
199 
200  /** \brief Abstract key point detection method. */
201  virtual void
202  detectKeypoints (PointCloudOut &output) = 0;
203  };
204 }
205 
206 #include <pcl/keypoints/impl/keypoint.hpp>
void setRadiusSearch(double radius)
Set the sphere radius that is to be used for determining the nearest neighbors used for the key point...
Definition: keypoint.h:127
double getRadiusSearch()
Get the sphere radius used for determining the neighbors.
Definition: keypoint.h:131
void setSearchMethod(const KdTreePtr &tree)
Provide a pointer to the search object.
Definition: keypoint.h:102
pcl::PointIndicesPtr keypoints_indices_
Indices of the keypoints in the input cloud.
Definition: keypoint.h:194
void setKSearch(int k)
Set the number of k nearest neighbors to use for the feature estimation.
Definition: keypoint.h:116
std::string name_
The key point detection method&#39;s name.
Definition: keypoint.h:170
This file defines compatibility wrappers for low level I/O functions.
Definition: convolution.h:44
pcl::PointIndicesConstPtr getKeypointsIndices()
Definition: keypoint.h:137
pcl::PointCloud< PointInT > PointCloudIn
Definition: keypoint.h:66
pcl::search::Search< PointInT > KdTree
Definition: keypoint.h:64
PointCloudIn::ConstPtr PointCloudInConstPtr
Definition: keypoint.h:68
void compute(PointCloudOut &output)
Base method for key point detection for all points given in <setInputCloud (), setIndices ()> using t...
Definition: keypoint.hpp:124
double search_radius_
The nearest neighbors search radius for each point.
Definition: keypoint.h:188
boost::shared_ptr< KdTree< PointT > > Ptr
Definition: kdtree.h:70
Keypoint()
Empty constructor.
Definition: keypoint.h:75
boost::function< int(const PointCloudIn &cloud, int index, double, std::vector< int > &, std::vector< float > &)> SearchMethodSurface
Definition: keypoint.h:71
boost::shared_ptr< PointCloud< PointT > > Ptr
Definition: point_cloud.h:427
KdTreePtr getSearchMethod()
Get a pointer to the search method used.
Definition: keypoint.h:106
int k_
The number of K nearest neighbors to use for each point.
Definition: keypoint.h:191
PointCloudInConstPtr surface_
An input point cloud describing the surface that is to be used for nearest neighbors estimation...
Definition: keypoint.h:179
PCLBase< PointInT > BaseClass
Definition: keypoint.h:63
PCL base class.
Definition: pcl_base.h:68
virtual bool initCompute()
Definition: keypoint.hpp:43
boost::shared_ptr< const PointCloud< PointInT > > ConstPtr
Definition: point_cloud.h:428
PointCloudInConstPtr getSearchSurface()
Get a pointer to the surface point cloud dataset.
Definition: keypoint.h:96
SearchMethod search_method_
The search method template for indices.
Definition: keypoint.h:173
boost::shared_ptr< ::pcl::PointIndices const > PointIndicesConstPtr
Definition: PointIndices.h:27
int getKSearch()
get the number of k nearest neighbors used for the feature estimation.
Definition: keypoint.h:120
boost::shared_ptr< Keypoint< PointInT, PointOutT > > Ptr
Definition: keypoint.h:57
KdTree::Ptr KdTreePtr
Definition: keypoint.h:65
boost::shared_ptr< ::pcl::PointIndices > PointIndicesPtr
Definition: PointIndices.h:26
PointCloudIn::Ptr PointCloudInPtr
Definition: keypoint.h:67
boost::function< int(int, double, std::vector< int > &, std::vector< float > &)> SearchMethod
Definition: keypoint.h:70
double search_parameter_
The actual search parameter (casted from either search_radius_ or k_).
Definition: keypoint.h:185
double getSearchParameter()
Get the internal search parameter.
Definition: keypoint.h:110
pcl::PointCloud< PointOutT > PointCloudOut
Definition: keypoint.h:69
boost::shared_ptr< const Keypoint< PointInT, PointOutT > > ConstPtr
Definition: keypoint.h:58
PointCloudConstPtr input_
The input point cloud dataset.
Definition: pcl_base.h:150
int searchForNeighbors(int index, double parameter, std::vector< int > &indices, std::vector< float > &distances) const
Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface ...
Definition: keypoint.h:155
const std::string & getClassName() const
Get a string representation of the name of this class.
Definition: keypoint.h:198
virtual void detectKeypoints(PointCloudOut &output)=0
Abstract key point detection method.
SearchMethodSurface search_method_surface_
The search method template for points.
Definition: keypoint.h:176
KdTreePtr tree_
A pointer to the spatial search object.
Definition: keypoint.h:182
virtual void setSearchSurface(const PointCloudInConstPtr &cloud)
Provide a pointer to the input dataset that we need to estimate features at every point for...
Definition: keypoint.h:92
~Keypoint()
Empty destructor.
Definition: keypoint.h:86