Point Cloud Library (PCL)  1.9.1-dev
normal_3d_omp.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #ifndef PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
42 #define PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
43 
44 #include <pcl/features/normal_3d_omp.h>
45 
46 ///////////////////////////////////////////////////////////////////////////////////////////
47 template <typename PointInT, typename PointOutT> void
49 {
50  if (nr_threads == 0)
51 #ifdef _OPENMP
52  threads_ = omp_get_num_procs();
53 #else
54  threads_ = 1;
55 #endif
56  else
57  threads_ = nr_threads;
58 }
59 
60 ///////////////////////////////////////////////////////////////////////////////////////////
61 template <typename PointInT, typename PointOutT> void
63 {
64  // Allocate enough space to hold the results
65  // \note This resize is irrelevant for a radiusSearch ().
66  std::vector<int> nn_indices (k_);
67  std::vector<float> nn_dists (k_);
68 
69  output.is_dense = true;
70  // Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
71  if (input_->is_dense)
72  {
73 #ifdef _OPENMP
74 #pragma omp parallel for shared (output) private (nn_indices, nn_dists) num_threads(threads_)
75 #endif
76  // Iterating over the entire index vector
77  for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
78  {
79  Eigen::Vector4f n;
80  if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0 ||
81  !pcl::computePointNormal (*surface_, nn_indices, n, output.points[idx].curvature))
82  {
83  output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
84 
85  output.is_dense = false;
86  continue;
87  }
88 
89  output.points[idx].normal_x = n[0];
90  output.points[idx].normal_y = n[1];
91  output.points[idx].normal_z = n[2];
92 
93  flipNormalTowardsViewpoint (input_->points[(*indices_)[idx]], vpx_, vpy_, vpz_,
94  output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2]);
95 
96  }
97  }
98  else
99  {
100 #ifdef _OPENMP
101 #pragma omp parallel for shared (output) private (nn_indices, nn_dists) num_threads(threads_)
102 #endif
103  // Iterating over the entire index vector
104  for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
105  {
106  Eigen::Vector4f n;
107  if (!isFinite ((*input_)[(*indices_)[idx]]) ||
108  this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0 ||
109  !pcl::computePointNormal (*surface_, nn_indices, n, output.points[idx].curvature))
110  {
111  output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
112 
113  output.is_dense = false;
114  continue;
115  }
116 
117  output.points[idx].normal_x = n[0];
118  output.points[idx].normal_y = n[1];
119  output.points[idx].normal_z = n[2];
120 
121  flipNormalTowardsViewpoint (input_->points[(*indices_)[idx]], vpx_, vpy_, vpz_,
122  output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2]);
123 
124  }
125  }
126 }
127 
128 #define PCL_INSTANTIATE_NormalEstimationOMP(T,NT) template class PCL_EXPORTS pcl::NormalEstimationOMP<T,NT>;
129 
130 #endif // PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
131 
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition: point_tests.h:53
std::vector< PointT, Eigen::aligned_allocator< PointT > > points
The point data.
Definition: point_cloud.h:411
NormalEstimationOMP estimates local surface properties at each 3D point, such as surface normals and ...
Definition: normal_3d_omp.h:53
bool computePointNormal(const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &plane_parameters, float &curvature)
Compute the Least-Squares plane fit for a given set of points, and return the estimated plane paramet...
Definition: normal_3d.h:60
void flipNormalTowardsViewpoint(const PointT &point, float vp_x, float vp_y, float vp_z, Eigen::Matrix< Scalar, 4, 1 > &normal)
Flip (in place) the estimated normal of a point towards a given viewpoint.
Definition: normal_3d.h:121
void setNumberOfThreads(unsigned int nr_threads=0)
Initialize the scheduler and set the number of threads to use.
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields)...
Definition: point_cloud.h:419