Point Cloud Library (PCL)  1.9.1-dev
transformation_estimation_symmetric_point_to_plane_lls.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2019-, Open Perception, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #pragma once
39 
40 #include <pcl/cloud_iterator.h>
41 
42 //////////////////////////////////////////////////////////////////////////////////////////////
43 template <typename PointSource, typename PointTarget, typename Scalar> inline void
46  const pcl::PointCloud<PointTarget> &cloud_tgt,
47  Matrix4 &transformation_matrix) const
48 {
49  const auto nr_points = cloud_src.points.size ();
50  if (cloud_tgt.points.size () != nr_points)
51  {
52  PCL_ERROR ("[pcl::TransformationEstimationSymmetricPointToPlaneLLS::estimateRigidTransformation] Number or points in source (%lu) differs from target (%lu)!\n", nr_points, cloud_tgt.points.size ());
53  return;
54  }
55 
56  ConstCloudIterator<PointSource> source_it (cloud_src);
57  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
58  estimateRigidTransformation (source_it, target_it, transformation_matrix);
59 }
60 
61 //////////////////////////////////////////////////////////////////////////////////////////////
62 template <typename PointSource, typename PointTarget, typename Scalar> void
65  const std::vector<int> &indices_src,
66  const pcl::PointCloud<PointTarget> &cloud_tgt,
67  Matrix4 &transformation_matrix) const
68 {
69  const auto nr_points = indices_src.size ();
70  if (cloud_tgt.points.size () != nr_points)
71  {
72  PCL_ERROR ("[pcl::TransformationEstimationSymmetricPointToPlaneLLS::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), cloud_tgt.points.size ());
73  return;
74  }
75 
76  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
77  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
78  estimateRigidTransformation (source_it, target_it, transformation_matrix);
79 }
80 
81 
82 //////////////////////////////////////////////////////////////////////////////////////////////
83 template <typename PointSource, typename PointTarget, typename Scalar> inline void
86  const std::vector<int> &indices_src,
87  const pcl::PointCloud<PointTarget> &cloud_tgt,
88  const std::vector<int> &indices_tgt,
89  Matrix4 &transformation_matrix) const
90 {
91  const auto nr_points = indices_src.size ();
92  if (indices_tgt.size () != nr_points)
93  {
94  PCL_ERROR ("[pcl::TransformationEstimationSymmetricPointToPlaneLLS::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), indices_tgt.size ());
95  return;
96  }
97 
98  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
99  ConstCloudIterator<PointTarget> target_it (cloud_tgt, indices_tgt);
100  estimateRigidTransformation (source_it, target_it, transformation_matrix);
101 }
102 
103 //////////////////////////////////////////////////////////////////////////////////////////////
104 template <typename PointSource, typename PointTarget, typename Scalar> inline void
107  const pcl::PointCloud<PointTarget> &cloud_tgt,
108  const pcl::Correspondences &correspondences,
109  Matrix4 &transformation_matrix) const
110 {
111  ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true);
112  ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false);
113  estimateRigidTransformation (source_it, target_it, transformation_matrix);
114 }
115 
116 //////////////////////////////////////////////////////////////////////////////////////////////
117 template <typename PointSource, typename PointTarget, typename Scalar> inline void
120  Matrix4 &transformation_matrix) const
121 {
122  // Construct the transformation matrix from rotation and translation
123  const Eigen::AngleAxis<Scalar> rotation_z (parameters (2), Eigen::Matrix<Scalar, 3, 1>::UnitZ ());
124  const Eigen::AngleAxis<Scalar> rotation_y (parameters (1), Eigen::Matrix<Scalar, 3, 1>::UnitY ());
125  const Eigen::AngleAxis<Scalar> rotation_x (parameters (0), Eigen::Matrix<Scalar, 3, 1>::UnitX ());
126  const Eigen::Translation<Scalar, 3> translation (parameters (3), parameters (4), parameters (5));
127  const Eigen::Transform<Scalar, 3, Eigen::Affine> transform = rotation_z * rotation_y * rotation_x *
128  translation *
129  rotation_z * rotation_y * rotation_x;
130  transformation_matrix = transform.matrix ();
131 }
132 
133 //////////////////////////////////////////////////////////////////////////////////////////////
134 template <typename PointSource, typename PointTarget, typename Scalar> inline void
137 {
138  using Matrix6 = Eigen::Matrix<Scalar, 6, 6>;
139  using Vector3 = Eigen::Matrix<Scalar, 3, 1>;
140 
141  Matrix6 ATA;
142  Vector6 ATb;
143  ATA.setZero ();
144  ATb.setZero ();
145  auto M = ATA.template selfadjointView<Eigen::Upper> ();
146 
147  // Approximate as a linear least squares problem
148  source_it.reset ();
149  target_it.reset ();
150  for (; source_it.isValid () && target_it.isValid (); ++source_it, ++target_it)
151  {
152  const Vector3 p (source_it->x, source_it->y, source_it->z);
153  const Vector3 q (target_it->x, target_it->y, target_it->z);
154  const Vector3 n1 (source_it->getNormalVector3fMap());
155  const Vector3 n2 (target_it->getNormalVector3fMap());
156  Vector3 n;
157  if (enforce_same_direction_normals_)
158  {
159  if (n1.dot (n2) >= 0.)
160  n = n1 + n2;
161  else
162  n = n1 - n2;
163  }
164  else
165  {
166  n = n1 + n2;
167  }
168 
169  if (!p.array().isFinite().all() ||
170  !q.array().isFinite().all() ||
171  !n.array().isFinite().all())
172  {
173  continue;
174  }
175 
176  Vector6 v;
177  v << (p + q).cross (n), n;
178  M.rankUpdate (v);
179 
180  ATb += v * (q - p).dot (n);
181  }
182 
183  // Solve A*x = b
184  const Vector6 x = M.ldlt ().solve (ATb);
185 
186  // Construct the transformation matrix from x
187  constructTransformationMatrix (x, transformation_matrix);
188 }
189 
190 //////////////////////////////////////////////////////////////////////////////////////////////
191 template <typename PointSource, typename PointTarget, typename Scalar> inline void
193 setEnforceSameDirectionNormals (bool enforce_same_direction_normals)
194 {
195  enforce_same_direction_normals_ = enforce_same_direction_normals;
196 }
197 
198 //////////////////////////////////////////////////////////////////////////////////////////////
199 template <typename PointSource, typename PointTarget, typename Scalar> inline bool
202 {
203  return enforce_same_direction_normals_;
204 }
bool getEnforceSameDirectionNormals()
Obtain whether source or target normals are negated on a per-point basis such that they point in the ...
Iterator class for point clouds with or without given indices.
std::vector< PointT, Eigen::aligned_allocator< PointT > > points
The point data.
Definition: point_cloud.h:393
void constructTransformationMatrix(const Vector6 &parameters, Matrix4 &transformation_matrix) const
Construct a 4 by 4 transformation matrix from the provided rotation and translation.
void setEnforceSameDirectionNormals(bool enforce_same_direction_normals)
Set whether or not to negate source or target normals on a per-point basis such that they point in th...
std::vector< pcl::Correspondence, Eigen::aligned_allocator< pcl::Correspondence > > Correspondences
void estimateRigidTransformation(const pcl::PointCloud< PointSource > &cloud_src, const pcl::PointCloud< PointTarget > &cloud_tgt, Matrix4 &transformation_matrix) const override
Estimate a rigid rotation transformation between a source and a target point cloud using SVD...