Point Cloud Library (PCL)  1.9.1-dev
transformation_validation_euclidean.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #pragma once
42 
43 #include <pcl/pcl_macros.h>
44 #include <pcl/point_representation.h>
45 #include <pcl/search/kdtree.h>
46 #include <pcl/kdtree/kdtree.h>
47 #include <pcl/registration/transformation_validation.h>
48 
49 namespace pcl
50 {
51  namespace registration
52  {
53  /** \brief TransformationValidationEuclidean computes an L2SQR norm between a source and target
54  * dataset.
55  *
56  * To prevent points with bad correspondences to contribute to the overall score, the class also
57  * accepts a maximum_range parameter given via \ref setMaxRange that is used as a cutoff value for
58  * nearest neighbor distance comparisons.
59  *
60  * The output score is normalized with respect to the number of valid correspondences found.
61  *
62  * Usage example:
63  * \code
64  * pcl::TransformationValidationEuclidean<pcl::PointXYZ, pcl::PointXYZ> tve;
65  * tve.setMaxRange (0.01); // 1cm
66  * double score = tve.validateTransformation (source, target, transformation);
67  * \endcode
68  *
69  * \note The class is templated on the source and target point types as well as on the output scalar of the transformation matrix (i.e., float or double). Default: float.
70  * \author Radu B. Rusu
71  * \ingroup registration
72  */
73  template <typename PointSource, typename PointTarget, typename Scalar = float>
75  {
76  public:
78 
79  using Ptr = boost::shared_ptr<TransformationValidation<PointSource, PointTarget, Scalar> >;
80  using ConstPtr = boost::shared_ptr<const TransformationValidation<PointSource, PointTarget, Scalar> >;
81 
83  using KdTreePtr = typename KdTree::Ptr;
84 
86 
89 
90  /** \brief Constructor.
91  * Sets the \a max_range parameter to double::max, \a threshold_ to NaN
92  * and initializes the internal search \a tree to a FLANN kd-tree.
93  */
95  max_range_ (std::numeric_limits<double>::max ()),
96  threshold_ (std::numeric_limits<double>::quiet_NaN ()),
97  tree_ (new pcl::search::KdTree<PointTarget>),
98  force_no_recompute_ (false)
99  {
100  }
101 
103 
104  /** \brief Set the maximum allowable distance between a point and its correspondence in the
105  * target in order for a correspondence to be considered \a valid. Default: double::max.
106  * \param[in] max_range the new maximum allowable distance
107  */
108  inline void
109  setMaxRange (double max_range)
110  {
111  max_range_ = max_range;
112  }
113 
114  /** \brief Get the maximum allowable distance between a point and its
115  * correspondence, as set by the user.
116  */
117  inline double
119  {
120  return (max_range_);
121  }
122 
123 
124  /** \brief Provide a pointer to the search object used to find correspondences in
125  * the target cloud.
126  * \param[in] tree a pointer to the spatial search object.
127  * \param[in] force_no_recompute If set to true, this tree will NEVER be
128  * recomputed, regardless of calls to setInputTarget. Only use if you are
129  * confident that the tree will be set correctly.
130  */
131  inline void
133  bool force_no_recompute = false)
134  {
135  tree_ = tree;
136  if (force_no_recompute)
137  {
138  force_no_recompute_ = true;
139  }
140  }
141 
142  /** \brief Set a threshold for which a specific transformation is considered valid.
143  *
144  * \note Since we're using MSE (Mean Squared Error) as a metric, the threshold
145  * represents the mean Euclidean distance threshold over all nearest neighbors
146  * up to max_range.
147  *
148  * \param[in] threshold the threshold for which a transformation is vali
149  */
150  inline void
151  setThreshold (double threshold)
152  {
153  threshold_ = threshold;
154  }
155 
156  /** \brief Get the threshold for which a specific transformation is valid. */
157  inline double
159  {
160  return (threshold_);
161  }
162 
163  /** \brief Validate the given transformation with respect to the input cloud data, and return a score.
164  *
165  * \param[in] cloud_src the source point cloud dataset
166  * \param[in] cloud_tgt the target point cloud dataset
167  * \param[out] transformation_matrix the resultant transformation matrix
168  *
169  * \return the score or confidence measure for the given
170  * transformation_matrix with respect to the input data
171  */
172  double
174  const PointCloudSourceConstPtr &cloud_src,
175  const PointCloudTargetConstPtr &cloud_tgt,
176  const Matrix4 &transformation_matrix) const;
177 
178  /** \brief Comparator function for deciding which score is better after running the
179  * validation on multiple transforms.
180  *
181  * \param[in] score1 the first value
182  * \param[in] score2 the second value
183  *
184  * \return true if score1 is better than score2
185  */
186  virtual bool
187  operator() (const double &score1, const double &score2) const
188  {
189  return (score1 < score2);
190  }
191 
192  /** \brief Check if the score is valid for a specific transformation.
193  *
194  * \param[in] cloud_src the source point cloud dataset
195  * \param[in] cloud_tgt the target point cloud dataset
196  * \param[out] transformation_matrix the transformation matrix
197  *
198  * \return true if the transformation is valid, false otherwise.
199  */
200  virtual bool
202  const PointCloudSourceConstPtr &cloud_src,
203  const PointCloudTargetConstPtr &cloud_tgt,
204  const Matrix4 &transformation_matrix) const
205  {
206  if (std::isnan (threshold_))
207  {
208  PCL_ERROR ("[pcl::TransformationValidationEuclidean::isValid] Threshold not set! Please use setThreshold () before continuing.");
209  return (false);
210  }
211 
212  return (validateTransformation (cloud_src, cloud_tgt, transformation_matrix) < threshold_);
213  }
214 
215  protected:
216  /** \brief The maximum allowable distance between a point and its correspondence in the target
217  * in order for a correspondence to be considered \a valid. Default: double::max.
218  */
219  double max_range_;
220 
221  /** \brief The threshold for which a specific transformation is valid.
222  * Set to NaN by default, as we must require the user to set it.
223  */
224  double threshold_;
225 
226  /** \brief A pointer to the spatial search object. */
228 
229  /** \brief A flag which, if set, means the tree operating on the target cloud
230  * will never be recomputed*/
232 
233 
234  /** \brief Internal point representation uses only 3D coordinates for L2 */
236  {
239  public:
240  using Ptr = boost::shared_ptr<MyPointRepresentation>;
241  using ConstPtr = boost::shared_ptr<const MyPointRepresentation>;
242 
244  {
245  nr_dimensions_ = 3;
246  trivial_ = true;
247  }
248 
249  /** \brief Empty destructor */
251 
252  virtual void
253  copyToFloatArray (const PointTarget &p, float * out) const
254  {
255  out[0] = p.x;
256  out[1] = p.y;
257  out[2] = p.z;
258  }
259  };
260 
261  public:
263  };
264  }
265 }
266 
267 #include <pcl/registration/impl/transformation_validation_euclidean.hpp>
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
Definition: kdtree.h:61
KdTreePtr tree_
A pointer to the spatial search object.
bool force_no_recompute_
A flag which, if set, means the tree operating on the target cloud will never be recomputed.
This file defines compatibility wrappers for low level I/O functions.
Definition: convolution.h:45
boost::shared_ptr< TransformationValidation< PointSource, PointTarget, Scalar > > Ptr
double max_range_
The maximum allowable distance between a point and its correspondence in the target in order for a co...
double validateTransformation(const PointCloudSourceConstPtr &cloud_src, const PointCloudTargetConstPtr &cloud_tgt, const Matrix4 &transformation_matrix) const
Validate the given transformation with respect to the input cloud data, and return a score...
typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Definition: pcl_macros.h:345
typename KdTree::PointRepresentationConstPtr PointRepresentationConstPtr
double getMaxRange()
Get the maximum allowable distance between a point and its correspondence, as set by the user...
void setMaxRange(double max_range)
Set the maximum allowable distance between a point and its correspondence in the target in order for ...
void setThreshold(double threshold)
Set a threshold for which a specific transformation is considered valid.
PointRepresentation provides a set of methods for converting a point structs/object into an n-dimensi...
typename TransformationValidation< PointSource, PointTarget, Scalar >::Matrix4 Matrix4
void setSearchMethodTarget(const KdTreePtr &tree, bool force_no_recompute=false)
Provide a pointer to the search object used to find correspondences in the target cloud...
int nr_dimensions_
The number of dimensions in this point&#39;s vector (i.e.
boost::shared_ptr< const TransformationValidation< PointSource, PointTarget, Scalar > > ConstPtr
typename TransformationValidation< PointSource, PointTarget >::PointCloudSourceConstPtr PointCloudSourceConstPtr
boost::shared_ptr< KdTree< PointT, Tree > > Ptr
Definition: kdtree.h:78
typename TransformationValidation< PointSource, PointTarget >::PointCloudTargetConstPtr PointCloudTargetConstPtr
typename PointCloudSource::ConstPtr PointCloudSourceConstPtr
double getThreshold()
Get the threshold for which a specific transformation is valid.
TransformationValidationEuclidean computes an L2SQR norm between a source and target dataset...
double threshold_
The threshold for which a specific transformation is valid.
bool trivial_
Indicates whether this point representation is trivial.
boost::shared_ptr< const PointRepresentation< PointT > > PointRepresentationConstPtr
Definition: kdtree.h:83
virtual void copyToFloatArray(const PointTarget &p, float *out) const
Copy point data from input point to a float array.
virtual bool isValid(const PointCloudSourceConstPtr &cloud_src, const PointCloudTargetConstPtr &cloud_tgt, const Matrix4 &transformation_matrix) const
Check if the score is valid for a specific transformation.
Defines all the PCL and non-PCL macros used.
virtual bool operator()(const double &score1, const double &score2) const
Comparator function for deciding which score is better after running the validation on multiple trans...